
On the notion of “software-independence”

in voting systems

By Ronald L. Rivest
John P. Wack

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology (MIT)

Cambridge, MA 02139
rivest@mit.edu

National Institute of Standards and Technology (NIST)
Information Technology Laboratory

Gaithersburg, MD 20899
john.wack@nist.gov

This paper defines and explores the notion of “software-independence” in voting
systems:

A voting system is software-independent if an undetected change or
error in its software cannot cause an undetectable change or error in an
election outcome.

For example, optical scan and some cryptographically-based voting systems are
software-independent. Variations and implications of this definition are explored.
We propose that software-independent voting systems should be preferred, and
software-dependent voting systems should be avoided.

An initial version of this paper was prepared for use by the Technical Guidelines
Development Committee (TGDC) in their development of the Voluntary Voting
System Guidelines (VVSG), which will specify the requirements that U.S. voting
systems must meet to receive certification.

Keywords: Security, voting, software-independence.

1. Introduction

The main purpose of this paper is to introduce and carefully define the terminology
of “software-independent” and “software-dependent” voting systems, and to discuss
their properties. This paper is definitional in character; there are no “results” as
such. Our goal is to provide crisp terminology for discussing voting systems, with
the view that such terminology will be useful in the next version of the VVSG,
currently under development by the U.S. Election Assistance Commission (EAC),

Article submitted to Royal Society TEX Paper



the TGDC, and the National Institute of Standards and Technology (NIST). The
TGDC has recommended software-independence as a requirement in the VVSG
(Technical Guidelines Development Committee, 2007).

We start by describing the problem that software-independence addresses: the
difficulty of assuring oneself that voted ballots will be recorded accurately by com-
plex and difficult-to-test software in all-electronic voting systems. We emphasize
that the problem is providing such assurance: the software may well be correct, but
convincing oneself (or others) that this is the case is effectively impossible. We then
define what constitutes a software-independent approach to voting system design.
We provide examples and discuss relevant issues.

This paper is intended to stimulate discussion. It is not an official document of
any organizations we may be associated with (e.g. MIT, NIST, or the TGDC) nor
does it pretend to represent official positions of any of these organizations.

2. Problem: Software complexity of voting systems

Electronic voting systems are complex and continue to grow more so. The require-
ments for privacy for the voter, for security against attack or failure, and for the
accuracy of the final tally are in serious conflict with each other. It is common wis-
dom that complex and conflicting system requirements leads to burgeoning system
complexity.

Voting system vendors express and capture this complexity via software in their
voting systems.

As an example, consider a Direct-Recording Electronic (DRE) voting system,
which typically provides a touch-screen user interface for voters to make selections
and cast ballots, and which stores the cast vote records in memory and on a remov-
able memory card. A DRE may display an essentially infinite variety of different
ballot layouts, and may include complex accessibility features for the sight-impaired
(e.g., so that a voter could use headphones and be guided to make selections using
an audio ballot).

At issue, then, is how to provide assurance, despite the complexity of the soft-
ware, that the voting system will accurately record the voter’s intentions. A pure
DRE voting system produces only electronic cast ballot records, which are not
directly observable or verifiable by the voter.

Consequently, no meaningful audit of the DRE’s electronic records to determine
their accuracy is possible; accuracy can only be estimated by a variety of other (im-
perfect) measures, such as comparing the accumulated tallies to pre-election can-
vassing results, performing software code reviews, and testing the system accuracy
before (or even during) the election.

2



(a) The difficulty of evaluating complex software for errors

It is a common maxim that complexity is the enemy of security and accuracy,
thus it is very difficult to evaluate a complex system. A very small error, such as a
transposed pair of characters or an omitted command to initialize a variable, in a
large complex system may cause unexpected results at unpredictable times. Or, it
may provide a vulnerability that can be exploited by an adversary for large benefits.

Finding all errors in a large system is generally held to be impossible in general
or else highly demanding and extremely expensive. Our ability to develop complex
software vastly exceeds our ability to prove its correctness or test it satisfactorily
within reasonable fiscal constraints (extensive testing of a voting system’s software
would certainly be cost-prohibitive given how voting in general is funded). A voting
system for which the integrity of the election results intrinsically depends on the
correctness of its software will always be somewhat suspect.

As we shall see, the software-independent approach follows the maxim, “Verify
the election results, not the voting system.”

(b) The need for software-independent approaches

With the DRE approach, one is forced to trust (or assume) that the software
is correct. If questions arise later about the accuracy of the election results (or if
a recount is demanded), there is again no recourse but to trust (or assume) that
the voting system did indeed record the votes accurately. We feel that one should
strongly prefer voting systems where the integrity of the election outcome is not
dependent on trusting the correctness of complex software.

The purpose of this paper is to define a new notion, that of “software-independence,”
that captures this desirable characteristic of providing election results that are ver-
ifiable, without having to depend on the assumption that the software is correct.

For users of “software-independent” voting systems, verification of the correct-
ness of the election results is possible. There need be no lingering unanswerable
concern that the election outcome was affected or actually determined by some
software bug (or worse, e.g., by a malicious piece of code).

3. Definition and rationale for software-independence

We now repeat the definition of software-independence, and explore its meaning.

A voting system is software-independent if an undetected change or
error in its software cannot cause an undetectable change or error in an
election outcome.

A voting system that is not software-independent is said to be software-dependent—
it is, in some sense, vulnerable to undetected programming errors, malicious code,
or software manipulation, thus the correctness of the election results are dependent
on the correctness of the software.

3



To illustrate the rationale for software-independence, let us run a few “thought
experiments.” Put yourself in the place an adversary and imagine that you have the
power to secretly replace any of the existing software used by the voting systems
by software of your own construction (you may assume that you have the source
code for the existing software).

With such an ability, can you (as the adversary) change an election outcome or
“rig an election” without fear of detection?

If so, the system is software-dependent—the software is an “Achilles heel” of the
voting system. Corrupting the software gives an adversary the power to secretly and
silently steal an election.

If not, the system is software-independent—the voting system as whole (in-
cluding the non-software components) has sufficient redundancy and potential for
cross-checking that misbehavior by the software can be detected. The detection
might be by the voter, by an election official or technician, by a post-election au-
ditor, by an observer, or by some member of the public. (Indeed, anyone but the
adversary.)

In these “thought-experiments,” we are considering the adversary as some evil
agent that could load fraudulent software into voting systems. More realistically, we
may consider this adversary to be an abstraction of the limitations of the software
development process and testing process. (As such, for the purposes of determining
whether a system is software-independent, one should presume that the software
errors were present when the software was written and were not caught by software
development control processes or by the certification process.)

As we have stated, complex software is difficult to write and to test, and will
therefore contain numerous unintentional “bugs” that occasionally can cause voting
systems to report incorrect election results. It would be extremely difficult and
expensive to determine with certainty that a piece of software is free of bugs that
might change an election outcome. Given the relatively small amounts of funding
allocated for developing and testing voting system software, we may safely consider
it as effectively impossible.

These notions are not new—others have discussed the problems associated with
using complex software in voting systems. Yet, we have heretofore lacked crisp
terminology for talking about the dependence of election outcomes on such complex
software.

(a) Refinements and elaborations of software-independence

There are a number of possible refinements and elaborations of the notion of
software-independence. We now motivate and introduce the distinction between
strong software-independence and weak software-independence.

Security mechanisms are typically one of two forms: prevention or detection.
Detection mechanisms may also be coupled with means for recovery. When identifi-
cation of participants and accountability for actions is also present, then detection
mechanisms are also the foundation for deterrence. Given the importance of recov-

4



ery mechanisms in addition to detection mechanisms, we propose the following two
definitions:

A voting system is strongly software-independent if an undetected change or
error in its software cannot cause an undetectable change or error in an election
outcome, and moreover, a detected change or error in an election outcome (due to
change or error in the software) can be corrected without re-running the election.

A voting system that is weakly software-independent conforms to the basic def-
inition of software-independence, that is, there is no recovery mechanism.

(b) Examples of software-independent approaches

Currently, there are two general categories of software-independent approaches.
Voter-verifiable paper record (VVPR) approaches constitute the first category, since
the VVPR allows (via a recount) the possibility of detecting (and even correcting)
errors due to software. Accordingly, these voting systems can be strongly software-
independent.

The most prominent example in this category is the optical scan voting system
used by most U.S. voters since the 2006 elections. The paper ballot is voter-verifiable
because the voter completes the ballot and can attest to its accuracy before it is
fed into the optical scanner; the paper ballot thus serves as an audit trail that
can be used in post-election audits of the optical scanner’s electronic results. An
electronic ballot marking system (EBM) may also be used to record the voter’s
choices electronically with a touch-screen interface and then to print a high-quality
voter verifiable paper ballot for feeding into the optical scanner.

Another example in this category is the voter-verified paper audit trail (VVPAT)
voting system, similar to a DRE but with a printer and additional logic. It produces
two records of the voter’s choices, one on the touch-screen display and one on paper
(a VVPR). The voter must verify that both records are correct before causing them
to be saved.

Cryptographic voting systems constitute the second category of software-independent
voting system approaches. They can provide detection mechanisms for errors caused
by software changes or errors (Adida 2006, Chaum 2004, Chaum et al. 2004, Karloff
et al. 2005, Neff 2004, Ryan & Peacock 2005, Ryan & Schneider 2006) At one level,
they can enable voters to detect when their votes have been improperly represented
to them at the polling site, and a simple recovery mechanism (re-voting) is avail-
able. At another level, they can enable anyone to detect when their votes have been
lost or changed, or when the official tally has been computed incorrectly. Recovery
is again possible. Most of the recently proposed cryptographic voting systems are
strongly software-independent.

Receipt-based cryptographic voting systems involve a physical, e.g., paper re-
ceipt that the voter can use to verify, during the process of voting, whether his or
her ballot was captured correctly. The contents of the receipt, in general, employ
cryptography in some form so that the voter is able to verify that the votes were
recorded accurately; the receipt does not show how the voter voted.

5



Approaches to software-independence other than pure use of VVPR or crypto-
graphic voting systems are potentially possible, although beyond the scope of our
paper.

4. How does one test for software-independence?

This brings up a more subtle point in the definition. What aspects of the voting
system make it “software-independent?” Is it just the hardware and software, or
does it also include the surrounding procedures? For example, is a voting system
still software-independent if no post-election audits are performed?

The answer is that a voting system is software-independent if, after consideration
of its software and hardware, it enables use of any election procedures needed to
determine whether the election outcome is accurate without having to trust that
the voting system software is correct. The election procedures could include those
carried out by voters in the course of casting ballots, or in the case of optical scan
and VVPAT, they could include election official procedures such as post-election
audits.

The detection of any software misbehavior does not need to be perfect; it only
needs to happen with sufficiently high probability, in an assumed ideal environment
with alert voters, pollworkers, etc.

As an example, consider the EBM which prints out a filled-in optical scan bal-
lot. Some voters may not review the printed ballot at all. Yet the EBM is still
software-independent; there is a significant probability that software misbehavior
by the EBM will be detected (this is similarly true of VVPAT). For the purposes
of the definition of “software independence,” we assume that (enough) voters are
sufficiently observant to detect such misbehavior. (If this assumption were discov-
ered to be false in practice, some increase in voter education might be necessary.)
Although some forms of such detectable misbehavior may leave no tangible proof
of misbehavior, the definition of software independence does not require that all
misbehavior have tangible proof; it is sufficient that the relevant misbehavior be
detectable and reportable.

Continuing with this example, we note that there is also software in the optical
scanner used to scan the ballots that might produce incorrect output. But such
misbehavior is detectable by a post-election audit procedure that hand-counts the
paper ballots, thus the optical scan voting system is software-independent. (Note
that such audits are typically statistical in nature and are thus not perfect detec-
tors of misbehavior. But a well-designed audit will catch such misbehavior with
reasonable probability (Aslam et al. 2007, Hall 2007).

To illustrate further, then, say that no post-election audit of an optical scan-
based election is required if the apparent margin of victory is more than 10%. An
optical scan system would be still be considered software-independent in such an
election, since the original voter-verified paper ballots are available for review, and
software misbehavior can still in principle be detected. (As a side note: we feel that

6



such post-election audits are always a good idea and that “no audit” should not be
an option. If an apparent margin of victory is large, a smaller audit is appropriate.)

As a final example, say that electronic pollbook systems are used in an optical
scan-based election, but the electronic pollbooks do not create a contemporaneous
paper record for each voter. Thus, their software must be trusted to show that the
number of optical scan records (paper and electronic) accurately reflect the actual
number of voters who used the scanners. Are these systems software-independent?
We would argue that the answer is no for the electronic pollbook, as the design
of this system has prevented an audit to determine if the number of optical scan
records is correct, i.e., its software must be trusted to be correct. A contemporaneous
paper record would have made the electronic pollbook software-independent.

5. Discussion

(a) Are other software-dependent alternatives sufficient?

Other alternatives to software-independence raised thus far have confused the
main motivator for software-independence with other security issues, including:

1. Parallel testing (Jones) which is often cited as an efficient and accurate gauge
of the correct operation of a voting system and, by implication, the correctness
of its software. However, relying upon it to detect errors in an election outcome
would require that it be done in a very comprehensive manner for each use
of the voting system, which is impractical. Parallel testing can be at best
an approximate gauge of software accuracy; it is also problematic against
malicious code, since it relies on an assumption (not supported in our software-
independence framework) that voters are not signalling to the malicious code
as to whether it is in “test” mode or running a real election.

2. Software verification of certified voting system software, which can be used to
determine that the voting system is running the software that it is supposed
to, i.e., the correct version of federally-certified software (it must be empha-
sized that this is not possible in today’s voting systems). It cannot ensure
that a software-dependent approach is using error-free software.

3. Use of independent multiple voting systems operating synchronously, which
has been proposed as a method for producing multiple sets of cast ballot
records that could be trusted to be correct if the systems are produced by
different vendors and connected via standard interfaces. Practically speaking,
requiring that different vendors produce the systems would be difficult at best
and not likely to counter the software-dependent approaches of both systems.

(b) Implications for testing and certification

Given the exceptional difficulty of proving software to be correct, it is a reason-
able proposal to disallow voting systems that are software-dependent altogether.

7



If testing and certification of software-dependent voting systems are to be nonethe-
less contemplated, then one should expect the certification process should be very
much more demanding and rigorous for a software-dependent voting system than
for a software-independent voting system. The manufacturer should submit a formal
proof of correctness, with perhaps an assurance level corresponding to EAL level 6
or 7 (Common Criteria, EAL), and public disclosure of the source code. Moreover,
the voting system must permit proof it is running the software it is supposed to.

(c) Related issues

There may be other aspects of software misbehavior that don’t quite fit our pro-
posed notion of software-independence. For example, software may bias a voter’s
choices in subtle ways (say by displaying one candidate’s name is slightly brighter
characters on a touch-screen). These issues fall outside the scope of software-
independence, since the correct “election outcome” isn’t well-defined until the voter
indicates her choice.

6. Conclusions and suggestions

The history of computing systems is that, given improvements and breakthroughs
in technology and speed, software is able to do more and thus its complexity in-
creases. The ability to prove the correctness of software diminishes rapidly as the
software becomes more complex. It would effectively be impossible to adequately
test future (and current) voting systems for flaws and introduced fraud, and thus
these systems would always remain suspect in their ability to provide secure and
accurate elections.

A software-independent approach to voting systems will provide voters with an
assurance that errors or fraud in election results can reliably be detected. Testing
costs to prove the correctness of the software can be held somewhat in check if,
fundamentally, the correctness of the election results does not rely on the correctness
of the software.

Acknowledgments

We’d like to thank John Kelsey and Ka-ping Yee for helpful comments and sugges-
tions.

References

Adida, B. 2006. Verifying Secret-Ballot Elections With Cryptography. PhD thesis, MIT
Department of EECS.

Aslam, J. & Popa, R. A. & Rivest, R. L. 2007 On auditing elections when precincts
have different sizes, December 18, 2007. http://people.csail.mit.edu/rivest/

AslamPopaRivest-OnAuditingElectionsWhenPrecinctsHaveDifferentSizes.pdf.

8

http://people.csail.mit.edu/rivest/AslamPopaRivest-OnAuditingElectionsWhenPrecinctsHaveDifferentSizes.pdf
http://people.csail.mit.edu/rivest/AslamPopaRivest-OnAuditingElectionsWhenPrecinctsHaveDifferentSizes.pdf


Chaum, D. 2004. Secret ballot receipts: True voter-verifiable elections. IEEE J. Security
and Privacy, pages 38 – 47, Jan/Feb 2004.

Chaum, D. & Ryan, P. Y. A. & Schneider, S. A. 2004. A practical, voter-verifiable election
scheme. Technical Report CS-TR-880, University of Newcastle upon Tyne School of
Computing Science, December 2004. http://www.cs.ncl.ac.uk/research/pubs/trs/

papers/880.pdf.

Common criteria evaluation and validation scheme. http://niap.bahialab.com/

cc-scheme/.

Common criteria assurance levels. http://www.cesg.gov.uk/site/iacs/index.cfm?

menuSelected=1&displayPage=13.

Hall, J. L. 2007. Post-election manual auditing of paper records: Bibliography, 2007.
http://www.josephhall.org/papers/auditing_biblio.pdf.

Jones, D. Parallel testing during an election. http://www.cs.uiowa.edu/~jones/voting/
testing.shtml#parallel.

Karlof, C. & Sastry, N. & Wagner, D. 2005. Cryptographic voting protocols: A system
perspective. In Proceedings 14th USENIX Security Symposium, August 2005. http:

//www.cs.berkeley.edu/~nks/papers/cryptovoting-usenix05.pdf.

C. Andrew Neff. 2004 Practical high certainty intent verification for encrypted votes,
October 2004. http://www.votehere.com/vhti/documentation/vsv-2.0.3638.pdf.

Ryan, P. Y. A. & Peacock, T. 2005. Prêt à Voter: A system perspective. Technical
Report CS-TR-929, University of Newcastle upon Tyne School of Computing Science,
September 2005. http://www.cs.ncl.ac.uk/research/pubs/trs/papers/929.pdf.

Ryan, P. Y. A. & Schneider, S. A. 2006. Prêt à Voter with re-encryption mixes. Technical
Report CS-TR-956, University of Newcastle upon Tyne School of Computing Science,
April 2006. http://www.cs.ncl.ac.uk/research/pubs/trs/papers/956.pdf.

Technical Guidelines Development Committee (TGDC). VVSG recommendations to the
EAC, August 31 2007. http://vote.nist.gov/vvsg-report.htm.

9

http://www.cs.ncl.ac.uk/research/pubs/trs/papers/880.pdf
http://www.cs.ncl.ac.uk/research/pubs/trs/papers/880.pdf
http://niap.bahialab.com/cc-scheme/
http://niap.bahialab.com/cc-scheme/
http://www.cesg.gov.uk/site/iacs/index.cfm?menuSelected=1&displayPage=13
http://www.cesg.gov.uk/site/iacs/index.cfm?menuSelected=1&displayPage=13
http://www.josephhall.org/papers/auditing_biblio.pdf
http://www.cs.uiowa.edu/~jones/voting/testing.shtml#parallel
http://www.cs.uiowa.edu/~jones/voting/testing.shtml#parallel
http://www.cs.berkeley.edu/~nks/papers/cryptovoting-usenix05.pdf
http://www.cs.berkeley.edu/~nks/papers/cryptovoting-usenix05.pdf
http://www.votehere.com/vhti/documentation/vsv-2.0.3638.pdf
http://www.cs.ncl.ac.uk/research/pubs/trs/papers/929.pdf
http://www.cs.ncl.ac.uk/research/pubs/trs/papers/956.pdf
http://vote.nist.gov/vvsg-report.htm

	Introduction
	Problem: Software complexity of voting systems
	The difficulty of evaluating complex software for errors
	The need for software-independent approaches

	Definition and rationale for software-independence
	Refinements and elaborations of software-independence
	Examples of software-independent approaches

	How does one test for software-independence?
	Discussion
	Are other software-dependent alternatives sufficient?
	Implications for testing and certification
	Related issues

	Conclusions and suggestions

