Share Button


Huffington Post (2014-07-01) Helen Caldicott

This Page:
Media Link:
More Info: Energy Policy, Nuclear Energy

There is an extraordinary push by certain individuals to extol the wonders of thorium-fueled nuclear reactors. In fact, so concerted is this push that some blame me for preventing the ongoing expansion of such technology. So here are the facts about thorium for those who are interested.

The U.S. tried for 50 years to create thorium reactors, without success. Four commercial thorium reactors were constructed, all of which failed. And because of the complexity of the problems enumerated below, thorium reactors are, by an order of magnitude, more expensive than uranium-fueled reactors.

The longstanding effort to produce these reactors cost the U.S. taxpayers billions of dollars, while billions more dollars are still required to dispose of the highly toxic waste emanating from these failed trials.

The truth is that thorium is not a naturally fissionable material. It is therefore necessary to mix thorium with either enriched uranium 235 (up to 20-percent enrichment) or plutonium, both of which are innately fissionable, to get the process going. Uranium enrichment is very expensive, while the reprocessing of spent nuclear fuel from uranium-powered reactors is enormously expensive and very dangerous to the workers, who are exposed to toxic radioactive isotopes during the process. Reprocessing spent fuel requires chopping up radioactive fuel rods by remote control and dissolving them in concentrated nitric acid, from which plutonium is precipitated out by complex chemical means. Vast quantities of highly acidic, highly radioactive liquid waste then remain to be disposed of. (Only 6 kilograms of plutonium 239 can fuel a nuclear weapon, while each reactor makes 250 kilograms of plutonium per year. One millionth of a gram of plutonium is carcinogenic if inhaled.)

So there is an extraordinarily complex, dangerous and expensive preliminary process to kick-start a fission process in a thorium reactor.

When non-fissionable thorium is mixed with either fissionable plutonium or uranium 235, it captures a neutron and converts to uranium 233, which itself is fissionable. Naturally it takes some time for enough uranium 233 to accumulate to make this particular fission process spontaneously ongoing.

Later the radioactive fuel would be removed from the reactor and reprocessed to separate out the uranium 233 from the contaminating fission products, and the uranium 233 will then be mixed with more thorium, to be placed in another thorium reactor.

But uranium 233 is also a very efficient fuel for nuclear weapons: It takes about the same amount of uranium 233 as plutonium 239 -- 6 kilograms -- to fuel a nuclear weapon. To its disgrace, the U.S. Department of Energy has already "lost track" of 96 kilograms of uranium 233.

A total of 2 tons of uranium 233 were manufactured in the U.S., and this material naturally requires similar stringent security measures used for plutonium storage, for obvious reasons. It is estimated that it will take over $1 million per kilogram to dispose of the seriously deadly material. An Energy Department safety investigation recently found a national repository for uranium 233 in a building constructed in 1943 at the Oak Ridge National Laboratory. It was in a dreadful condition, and investigators reported that an environmental release from a large fraction of the 1,100 containers "could be expected to occur within the next five years because some of the packages are approaching 30 years of age and have not been regularly inspected." The DOE determined that this building had "deteriorated beyond cost-effective repair and significant annual costs would be incurred to satisfy both current DOE storage standards, and to provide continued protection against potential nuclear criticality accidents or theft of the material."

The DOE Office of Environmental Management now considers the disposal of this uranium 233 to be "an unfunded mandate."

Thorium reactors also produce uranium 232, which decays into an extremely potent high-energy gamma emitter that can penetrate one meter of concrete, making the handling of this spent nuclear fuel extraordinarily dangerous.

Although thorium advocates say that thorium reactors produce little radioactive waste, they simply produce a spectrum of waste that's different from those from uranium 235, which includes many dangerous alpha and beta emitters and isotopes with extremely long half-lives, including technetium 99, with a half-life of 300,000 years, and iodine 129, with a half-life of 15.7 million years.

No wonder the U.S. nuclear industry gave up on thorium reactors in the 1980s. This was an unmitigated disaster, as are many other nuclear enterprises undertaken by the nuclear priesthood and the U.S. government.


Topic revision: r1 - 11 Aug 2014, RaymondLutz
This site is powered by FoswikiCopyright © by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding Cops? Send feedback